


Physically Based Rendering is a terrific book. It covers all the marvelous math, fascinating
physics, practical software engineering, and clever tricks that are necessary to write a state-
of-the-art photorealistic renderer. All of these topics are dealt with in a clear and pedagogical
manner without omitting the all-important practical details.

pbrt is not just a “toy” implementation of a ray tracer but a general and robust full-scale
global illumination renderer. It contains many important optimizations to reduce execution
time and memory consumption for complex scenes. Furthermore, pbrt is easy to extend to
experiment with other rendering algorithm variations.

This book is not only a textbook for students but also a useful reference book for practitioners
in the field. The third edition has been extended with new sections on bidirectional path
tracing, realistic camera models, and a state-of-the-art explanation of subsurface scattering.

Per Christensen
Senior Software Developer, RenderMan Products, Pixar Animation Studios

Looking for a job in research or high end rendering? Get your kick-start education and
create your own project with this book that comes along with both theory and real examples,
meaning real code and real content for your renderer.

With their third edition, Matt Pharr, Greg Humphreys, and Wenzel Jakob provide easy
access to even the most advanced rendering techniques like multiplexed Metropolis light
transport and quasi-Monte Carlo methods. Most importantly, the framework lets you skip
the bootstrap pain of getting data into and out of your renderer.

The holistic approach of literate programming results in a clear logic of an easy-to-study text.
If you are serious about graphics, there is no way around this unique and extremely valuable
book that is closest to the state of the art.

Alexander Keller
Director of Research, NVIDIA
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Preface

[Just as] other information should be available to those who want to learn and understand,
program source code is the only means for programmers to learn the art from their prede-
cessors. It would be unthinkable for playwrights not to allow other playwrights to read their
plays [or to allow them] at theater performances where they would be barred even from tak-
ing notes. Likewise, any good author is well read, as every child who learns to write will
read hundreds of times more than it writes. Programmers, however, are expected to invent
the alphabet and learn to write long novels all on their own. Programming cannot grow and
learn unless the next generation of programmers has access to the knowledge and information
gathered by other programmers before them. —Erik Naggum

Rendering is a fundamental component of computer graphics. At the highest level of
abstraction, rendering is the process of converting a description of a three-dimensional
scene into an image. Algorithms for animation, geometric modeling, texturing, and
other areas of computer graphics all must pass their results through some sort of ren-
dering process so that they can be made visible in an image. Rendering has become
ubiquitous; from movies to games and beyond, it has opened new frontiers for creative
expression, entertainment, and visualization.

In the early years of the field, research in rendering focused on solving fundamental prob-
lems such as determining which objects are visible from a given viewpoint. As effective
solutions to these problems have been found and as richer and more realistic scene de-
scriptions have become available thanks to continued progress in other areas of graphics,
modern rendering has grown to include ideas from a broad range of disciplines, includ-
ing physics and astrophysics, astronomy, biology, psychology and the study of perception,
and pure and applied mathematics. The interdisciplinary nature of rendering is one of
the reasons that it is such a fascinating area of study.

This book presents a selection of modern rendering algorithms through the documented
source code for a complete rendering system. Nearly all of the images in this book,
including the one on the front cover, were rendered by this software. All of the algorithms
that came together to generate these images are described in these pages. The system,
pbrt, is written using a programming methodology called literate programming that
mixes prose describing the system with the source code that implements it. We believe
that the literate programming approach is a valuable way to introduce ideas in computer
graphics and computer science in general. Often, some of the subtleties of an algorithm
can be unclear or hidden until it is implemented, so seeing an actual implementation is a
good way to acquire a solid understanding of that algorithm’s details. Indeed, we believe
that deep understanding of a small number of algorithms in this manner provides a
stronger base for further study of computer graphics than does superficial understanding
of many.
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In addition to clarifying how an algorithm is implemented in practice, presenting these
algorithms in the context of a complete and nontrivial software system also allows us
to address issues in the design and implementation of medium-sized rendering systems.
The design of a rendering system’s basic abstractions and interfaces has substantial im-
plications for both the elegance of the implementation and the ability to extend it later,
yet the trade-offs in this design space are rarely discussed.

pbrt and the contents of this book focus exclusively on photorealistic rendering , which
can be defined variously as the task of generating images that are indistinguishable from
those that a camera would capture in a photograph or as the task of generating images
that evoke the same response from a human observer as looking at the actual scene. There
are many reasons to focus on photorealism. Photorealistic images are crucial for the
movie special-effects industry because computer-generated imagery must often be mixed
seamlessly with footage of the real world. In entertainment applications where all of the
imagery is synthetic, photorealism is an effective tool for making the observer forget that
he or she is looking at an environment that does not actually exist. Finally, photorealism
gives a reasonably well-defined metric for evaluating the quality of the rendering system’s
output.

AUDIENCE

There are three main audiences that this book is intended for. The first is students in
graduate or upper-level undergraduate computer graphics classes. This book assumes
existing knowledge of computer graphics at the level of an introductory college-level
course, although certain key concepts such as basic vector geometry and transformations
will be reviewed here. For students who do not have experience with programs that have
tens of thousands of lines of source code, the literate programming style gives a gentle
introduction to this complexity. We pay special attention to explaining the reasoning
behind some of the key interfaces and abstractions in the system in order to give these
readers a sense of why the system is structured in the way that it is.

The second audience is advanced graduate students and researchers in computer graph-
ics. For those doing research in rendering, the book provides a broad introduction to the
area, and the pbrt source code provides a foundation that can be useful to build upon (or
at least to use bits of source code from). For those working in other areas, we believe that
having a thorough understanding of rendering can be helpful context to carry along.

Our final audience is software developers in industry. Although many of the ideas in this
book will likely be familiar to this audience, seeing explanations of the algorithms pre-
sented in the literate style may provide new perspectives. pbrt includes implementations
of a number of advanced and/or difficult-to-implement algorithms and techniques, such
as subdivision surfaces, Monte Carlo sampling algorithms, bidirectional path tracing,
Metropolis sampling, and subsurface scattering; these should be of particular interest
to experienced practitioners in rendering. We hope that delving into one particular or-
ganization of a complete and nontrivial rendering system will also be thought provoking
to this audience.
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OVERVIEW AND GOALS

pbrt is based on the ray-tracing algorithm. Ray tracing is an elegant technique that has
its origins in lens making; Carl Friedrich Gauß traced rays through lenses by hand in
the 19th century. Ray-tracing algorithms on computers follow the path of infinitesimal
rays of light through the scene until they intersect a surface. This approach gives a
simple method for finding the first visible object as seen from any particular position
and direction and is the basis for many rendering algorithms.

pbrt was designed and implemented with three main goals in mind: it should be com-
plete, it should be illustrative, and it should be physically based.

Completeness implies that the system should not lack key features found in high-quality
commercial rendering systems. In particular, it means that important practical issues,
such as antialiasing, robustness, numerical precision, and the ability to efficiently render
complex scenes, should all be addressed thoroughly. It is important to consider these is-
sues from the start of the system’s design, since these features can have subtle implications
for all components of the system and can be quite difficult to retrofit into the system at a
later stage of implementation.

Our second goal means that we tried to choose algorithms, data structures, and rendering
techniques with care and with an eye toward readability and clarity. Since their imple-
mentations will be examined by more readers than is the case for many other rendering
systems, we tried to select the most elegant algorithms that we were aware of and imple-
ment them as well as possible. This goal also required that the system be small enough
for a single person to understand completely. We have implemented pbrt using an exten-
sible architecture, with the core of the system implemented in terms of a set of carefully
designed abstract base classes, and as much of the specific functionality as possible in im-
plementations of these base classes. The result is that one doesn’t need to understand all
of the specific implementations in order to understand the basic structure of the system.
This makes it easier to delve deeply into parts of interest and skip others, without losing
sight of how the overall system fits together.

There is a tension between the two goals of being complete and being illustrative. Imple-
menting and describing every possible useful technique would not only make this book
unacceptably long, but also would make the system prohibitively complex for most read-
ers. In cases where pbrt lacks a particularly useful feature, we have attempted to design
the architecture so that the feature could be added without altering the overall system
design.

The basic foundations for physically based rendering are the laws of physics and their
mathematical expression. pbrt was designed to use the correct physical units and con-
cepts for the quantities it computes and the algorithms it implements. When configured
to do so, pbrt can compute images that are physically correct ; they accurately reflect the
lighting as it would be in a real-world version of the scene. One advantage of the deci-
sion to use a physical basis is that it gives a concrete standard of program correctness:
for simple scenes, where the expected result can be computed in closed form, if pbrt
doesn’t compute the same result, we know there must be a bug in the implementation.
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Similarly, if different physically based lighting algorithms in pbrt give different results
for the same scene, or if pbrt doesn’t give the same results as another physically based
renderer, there is certainly an error in one of them. Finally, we believe that this physically
based approach to rendering is valuable because it is rigorous. When it is not clear how a
particular computation should be performed, physics gives an answer that guarantees a
consistent result.

Efficiency was given lower priority than these three goals. Since rendering systems often
run for many minutes or hours in the course of generating an image, efficiency is clearly
important. However, we have mostly confined ourselves to algorithmic efficiency rather
than low-level code optimization. In some cases, obvious micro-optimizations take a
backseat to clear, well-organized code, although we did make some effort to optimize
the parts of the system where most of the computation occurs.

In the course of presenting pbrt and discussing its implementation, we hope to convey
some hard-learned lessons from years of rendering research and development. There is
more to writing a good renderer than stringing together a set of fast algorithms; making
the system both flexible and robust is a difficult task. The system’s performance must
degrade gracefully as more geometry or light sources are added to it or as any other axis
of complexity is pushed. Numerical stability must be handled carefully, and algorithms
that don’t waste floating-point precision are critical.

The rewards for developing a system that addresses all these issues are enormous—it is
a great pleasure to write a new renderer or add a new feature to an existing renderer
and use it to create an image that couldn’t be generated before. Our most fundamental
goal in writing this book was to bring this opportunity to a wider audience. Readers
are encouraged to use the system to render the example scenes in the pbrt software
distribution as they progress through the book. Exercises at the end of each chapter
suggest modifications to the system that will help clarify its inner workings and more
complex projects to extend the system by adding new features.

The Web site for this book is located at www.pbrt.org. The latest version of the pbrt source
code is available from this site, and we will also post errata and bug fixes, additional scenes
to render, and supplemental utilities. Any bugs in pbrt or errors in this text that are not
listed at the Web site can be reported to the email address bugs@pbrt.org . We greatly value
your feedback!

CHANGES BETWEEN THE FIRST
AND SECOND EDITIONS

Six years passed between the publication of the first edition of this book in 2004 and
the second edition in 2010. In that time, thousands of copies of the book were sold, and
the pbrt software was downloaded thousands of times from the book’s Web site. The
pbrt user base gave us a significant amount of feedback and encouragement, and our
experience with the system guided many of the decisions we made in making changes
between the version of pbrt presented in the first edition and the version in the second
edition. In addition to a number of bug fixes, we also made several significant design
changes and enhancements:
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. Removal of the plugin architecture. The first version of pbrt used a run-time plugin
architecture to dynamically load code for implementations of objects like shapes,
lights, integrators, cameras, and other objects that were used in the scene currently
being rendered. This approach allowed users to extend pbrt with new object types
(e.g., new shape primitives) without recompiling the entire rendering system. This
approach initially seemed elegant, but it complicated the task of supporting pbrt
on multiple platforms and it made debugging more difficult. The only new usage
scenario that it truly enabled (binary-only distributions of pbrt or binary plugins)
was actually contrary to our pedagogical and open-source goals. Therefore, the
plugin architecture was dropped in this edition.

. Removal of the image-processing pipeline. The first version of pbrt provided a tone-
mapping interface that converted high-dynamic-range (HDR) floating-point out-
put images directly into low-dynamic-range TIFFs for display. This functionality
made sense in 2004, as support for HDR images was still sparse. In 2010, however,
advances in digital photography had made HDR images commonplace. Although
the theory and practice of tone mapping are elegant and worth learning, we decided
to focus the new book exclusively on the process of image formation and skip the
topic of image display. Interested readers should read the book written by Reinhard
et al. (2010) for a thorough and modern treatment of the HDR image display pro-
cess.

. Task parallelism. Multicore architectures became ubiquitous, and we felt that pbrt
would not remain relevant without the ability to scale to the number of locally avail-
able cores. We also hoped that the parallel programming implementation details
documented in this book would help graphics programmers understand some of
the subtleties and complexities in writing scalable parallel code (e.g., choosing ap-
propriate task granularities), which is still a difficult and too infrequently taught
topic.

. Appropriateness for “production” rendering. The first version of pbrt was intended
exclusively as a pedagogical tool and a stepping-stone for rendering research. Indeed,
we made a number of decisions in preparing the first edition that were contrary to
use in a production environment, such as limited support for image-based lighting,
no support for motion blur, and a photon mapping implementation that wasn’t
robust in the presence of complex lighting. With much improved support for these
features as well as support for subsurface scattering and Metropolis light transport,
we feel that with the second edition, pbrt became much more suitable for rendering
very high-quality images of complex environments.

CHANGES BETWEEN THE SECOND
AND THIRD EDITIONS

With the passage of another six years, it was time to update and extend the book and the
pbrt system. We continued to learn from readers’ and users’ experiences to better un-
derstand which topics were most useful to cover. Further, rendering research continued
apace; many parts of the book were due for an update to reflect current best practices.
We made significant improvements on a number of fronts:
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. Bidirectional light transport. The third version of pbrt now includes a full-featured
bidirectional path tracer, including full support for volumetric light transport and
multiple importance sampling to weight paths. An all-new Metropolis light trans-
port integrator uses components of the bidirectional path tracer, allowing for a
particularly succinct implementation of that algorithm. The foundations of these al-
gorithms were established approximately fifteen years ago; it’s overdue to have solid
support for them in pbrt.

. Subsurface scattering. The appearance of many objects—notably, skin and translu-
cent objects—is a result of subsurface light transport. Our implementation of sub-
surface scattering in the second edition reflected the state of the art in the early
2000s; we have thoroughly updated both our BSSRDF models and our subsurface
light transport algorithms to reflect the progress made in ten subsequent years of
research. We now use a considerably more accurate diffusion solution together with
a ray-tracing-based sampling technique, removing the need for the costly prepro-
cessing step used in the second edition.

. Numerically robust intersections. The effects of floating-point round-off error in
geometric ray intersection calculations have been a long-standing challenge in ray
tracing: they can cause small errors to be present throughout the image. We have
focused on this issue and derived conservative (but tight) bounds of this error,
which makes our implementation more robust to this issue than previous rendering
systems.

. Participating media representation. We have significantly improved the way that
scattering media are described and represented in the system; this allows for more
accurate results with nested scattering media. A new sampling technique enables
unbiased rendering of heterogeneous media in a way that cleanly integrates with all
of the other parts of the system.

. Measured materials. This edition includes a new technique to represent and evaluate
measured materials using a sparse frequency-space basis. This approach is conve-
nient because it allows for exact importance sampling, which was not possible with
the representation used in the previous edition.

. Photon mapping. A significant step forward for photon mapping algorithms has
been the development of variants that don’t require storing all of the photons in
memory. We have replaced pbrt’s photon mapping algorithm with an implemen-
tation based on stochastic progressive photon mapping, which efficiently renders
many difficult light transport effects.

. Sample generation algorithms. The distribution of sample values used for numer-
ical integration in rendering algorithms can have a surprisingly large effect on the
quality of the final results. We have thoroughly updated our treatment of this topic,
covering new approaches and efficient implementation techniques in more depth
than before.

Many other parts of the system have been improved and updated to reflect progress
in the field: microfacet reflection models are treated in more depth, with much better
sampling techniques; a new “curve” shape has been added for modeling hair and other
fine geometry; and a new camera model that simulates realistic lens systems is now
available. Throughout the book, we have made numerous smaller changes to more clearly
explain and illustrate the key concepts in physically based rendering systems like pbrt.
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ADDITIONAL READING

Donald Knuth’s article Literate Programming (Knuth 1984) describes the main ideas be-
hind literate programming as well as his web programming environment. The seminal
TEX typesetting system was written with web and has been published as a series of books
(Knuth 1986; Knuth 1993a). More recently, Knuth has published a collection of graph
algorithms in literate format in The Stanford GraphBase (Knuth 1993b). These programs
are enjoyable to read and are excellent presentations of their respective algorithms. The
Web site www.literateprogramming.com has pointers to many articles about literate pro-
gramming, literate programs to download, and a variety of literate programming sys-
tems; many refinements have been made since Knuth’s original development of the idea.

The only other literate programs we know of that have been published as books are the
implementation of the lcc compiler, which was written by Christopher Fraser and David
Hanson and published as A Retargetable C Compiler: Design and Implementation (Fraser
and Hanson 1995), and Martin Ruckert’s book on the mp3 audio format, Understanding
MP3 (Ruckert 2005).



01 INTRODUCTION

Rendering is the process of producing an image from the description of a 3D scene.
Obviously, this is a very broad task, and there are many ways to approach it. Physically
based techniques attempt to simulate reality; that is, they use principles of physics to
model the interaction of light and matter. While a physically based approach may seem
to be the most obvious way to approach rendering, it has only been widely adopted in
practice over the past 10 or so years. Section 1.7 at the end of this chapter gives a brief
history of physically based rendering and its recent adoption for offline rendering for
movies and for interactive rendering for games.

This book describes pbrt, a physically based rendering system based on the ray-tracing al-
gorithm. Most computer graphics books present algorithms and theory, sometimes com-
bined with snippets of code. In contrast, this book couples the theory with a complete
implementation of a fully functional rendering system. The source code to the system (as
well as example scenes and a collection of data for rendering) can be found on the pbrt
Web site, pbrt.org .

1.1 LITERATE PROGRAMMING

While writing the TEX typesetting system, Donald Knuth developed a new programming
methodology based on the simple but revolutionary idea that programs should be written
more for people’s consumption than for computers’ consumption. He named this methodol-
ogy literate programming . This book (including the chapter you’re reading now) is a long
literate program. This means that in the course of reading this book, you will read the
full implementation of the pbrt rendering system, not just a high-level description of it.

Literate programs are written in a metalanguage that mixes a document formatting
language (e.g., TEX or HTML) and a programming language (e.g., C++). Two separate
systems process the program: a “weaver” that transforms the literate program into a

Physically Based Rendering: From Theory To Implementation.
http://dx.doi.org/10.1016/B978-0-12-800645-0.50001-4
Copyright © 2017 Elsevier Ltd. All rights reserved.
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document suitable for typesetting and a “tangler” that produces source code suitable
for compilation. Our literate programming system is homegrown, but it was heavily
influenced by Norman Ramsey’s noweb system.

The literate programming metalanguage provides two important features. The first is
the ability to mix prose with source code. This feature makes the description of the
program just as important as its actual source code, encouraging careful design and
documentation. Second, the language provides mechanisms for presenting the program
code to the reader in an order that is entirely different from the compiler input. Thus,
the program can be described in a logical manner. Each named block of code is called a
fragment , and each fragment can refer to other fragments by name.

As a simple example, consider a function InitGlobals() that is responsible for initializing
all of a program’s global variables:1

void InitGlobals() {
nMarbles = 25.7;
shoeSize = 13;
dielectric = true;

}

Despite its brevity, this function is hard to understand without any context. Why, for
example, can the variable nMarbles take on floating-point values? Just looking at the
code, one would need to search through the entire program to see where each variable is
declared and how it is used in order to understand its purpose and the meanings of its
legal values. Although this structuring of the system is fine for a compiler, a human reader
would much rather see the initialization code for each variable presented separately, near
the code that actually declares and uses the variable.

In a literate program, one can instead write InitGlobals() like this:

�Function Definitions� ≡
void InitGlobals() {

�Initialize Global Variables 2�
}

This defines a fragment, called �Function Definitions�, that contains the definition of the
InitGlobals() function. The InitGlobals() function itself refers to another fragment,
�Initialize Global Variables�. Because the initialization fragment has not yet been defined,
we don’t know anything about this function except that it will probably contain assign-
ments to global variables. This is just the right level of abstraction for now, since no
variables have been declared yet. When we introduce the global variable shoeSize some-
where later in the program, we can then write

�Initialize Global Variables� ≡ 2

shoeSize = 13;

1 The example code in this section is merely illustrative and is not part of pbrt itself.
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Here we have started to define the contents of �Initialize Global Variables�. When the
literate program is tangled into source code for compilation, the literate programming
system will substitute the code shoeSize = 13; inside the definition of the InitGlobals()
function. Later in the text, we may define another global variable, dielectric, and we
can append its initialization to the fragment:

�Initialize Global Variables� +≡ 2

dielectric = true;

The +≡ symbol after the fragment name shows that we have added to a previously
defined fragment. When tangled, the result of these three fragments is the code

void InitGlobals() {
shoeSize = 13;
dielectric = true;

}

In this way, we can decompose complex functions into logically distinct parts, making
them much easier to understand. For example, we can write a complicated function as a
series of fragments:

�Function Definitions� +≡
void complexFunc(int x, int y, double *values) {

�Check validity of arguments�
if (x < y) {

�Swap parameter values�
}
�Do precomputation before loop�
�Loop through and update values array�

}

Again, the contents of each fragment are expanded inline in complexFunc() for compila-
tion. In the document, we can introduce each fragment and its implementation in turn.
This decomposition lets us present code a few lines at a time, making it easier to under-
stand. Another advantage of this style of programming is that by separating the function
into logical fragments, each with a single and well-delineated purpose, each one can then
be written, verified, or read independently. In general, we will try to make each fragment
less than 10 lines long.

In some sense, the literate programming system is just an enhanced macro substitution
package tuned to the task of rearranging program source code. This may seem like a
trivial change, but in fact literate programming is quite different from other ways of
structuring software systems.

1.1.1 INDEXING AND CROSS-REFERENCING

The following features are designed to make the text easier to navigate. Indices in the
page margins give page numbers where the functions, variables, and methods used on
that page are defined. Indices at the end of the book collect all of these identifiers so that
it’s possible to find definitions by name. Appendix C, “Index of Fragments,” lists the pages
where each fragment is defined and the pages where it is used. Within the text, a defined
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fragment name is followed by a list of page numbers on which that fragment is used. For
example, a hypothetical fragment definition such as

�A fascinating fragment� ≡ 184, 690

nMarbles += .001;

indicates that this fragment is used on pages 184 and 690. Occasionally we elide frag-
ments from the printed book that are either boilerplate code or substantially the same as
other fragments; when these fragments are used, no page numbers will be listed.

When a fragment is used inside another fragment, the page number on which it is first
defined appears after the fragment name. For example,

�Do something interesting�+≡ 500

InitializeSomethingInteresting();
�Do something else interesting 486�
CleanUp();

indicates that the �Do something else interesting� fragment is defined on page 486. If the
definition of the fragment is not included in the book, no page number will be listed.

1.2 PHOTOREALISTIC RENDERING AND
THE RAY-TRACING ALGORITHM

The goal of photorealistic rendering is to create an image of a 3D scene that is indistin-
guishable from a photograph of the same scene. Before we describe the rendering process,
it is important to understand that in this context the word indistinguishable is imprecise
because it involves a human observer, and different observers may perceive the same im-
age differently. Although we will cover a few perceptual issues in this book, accounting for
the precise characteristics of a given observer is a very difficult and largely unsolved prob-
lem. For the most part, we will be satisfied with an accurate simulation of the physics of
light and its interaction with matter, relying on our understanding of display technology
to present the best possible image to the viewer.

Almost all photorealistic rendering systems are based on the ray-tracing algorithm. Ray
tracing is actually a very simple algorithm; it is based on following the path of a ray of
light through a scene as it interacts with and bounces off objects in an environment.
Although there are many ways to write a ray tracer, all such systems simulate at least
the following objects and phenomena:

. Cameras: A camera model determines how and from where the scene is being
viewed, including how an image of the scene is recorded on a sensor. Many ren-
dering systems generate viewing rays starting at the camera that are then traced into
the scene.

. Ray–object intersections: We must be able to tell precisely where a given ray intersects
a given geometric object. In addition, we need to determine certain properties of
the object at the intersection point, such as a surface normal or its material. Most
ray tracers also have some facility for testing the intersection of a ray with multiple
objects, typically returning the closest intersection along the ray.
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. Light sources: Without lighting, there would be little point in rendering a scene. A
ray tracer must model the distribution of light throughout the scene, including not
only the locations of the lights themselves but also the way in which they distribute
their energy throughout space.

. Visibility: In order to know whether a given light deposits energy at a point on a
surface, we must know whether there is an uninterrupted path from the point to
the light source. Fortunately, this question is easy to answer in a ray tracer, since we
can just construct the ray from the surface to the light, find the closest ray–object
intersection, and compare the intersection distance to the light distance.

. Surface scattering: Each object must provide a description of its appearance, includ-
ing information about how light interacts with the object’s surface, as well as the
nature of the reradiated (or scattered) light. Models for surface scattering are typi-
cally parameterized so that they can simulate a variety of appearances.

. Indirect light transport: Because light can arrive at a surface after bouncing off or
passing through other surfaces, it is usually necessary to trace additional rays origi-
nating at the surface to fully capture this effect.

. Ray propagation: We need to know what happens to the light traveling along a ray
as it passes through space. If we are rendering a scene in a vacuum, light energy
remains constant along a ray. Although true vacuums are unusual on Earth, they
are a reasonable approximation for many environments. More sophisticated models
are available for tracing rays through fog, smoke, the Earth’s atmosphere, and so on.

We will briefly discuss each of these simulation tasks in this section. In the next section,
we will show pbrt’s high-level interface to the underlying simulation components and
follow the progress of a single ray through the main rendering loop. We will also present
the implementation of a surface scattering model based on Turner Whitted’s original ray-
tracing algorithm.

1.2.1 CAMERAS

Nearly everyone has used a camera and is familiar with its basic functionality: you indi-
cate your desire to record an image of the world (usually by pressing a button or tapping
a screen), and the image is recorded onto a piece of film or an electronic sensor. One of
the simplest devices for taking photographs is called the pinhole camera. Pinhole cameras
consist of a light-tight box with a tiny hole at one end (Figure 1.1). When the hole is un-
covered, light enters this hole and falls on a piece of photographic paper that is affixed to
the other end of the box. Despite its simplicity, this kind of camera is still used today, fre-
quently for artistic purposes. Very long exposure times are necessary to get enough light
on the film to form an image.

Although most cameras are substantially more complex than the pinhole camera, it is a
convenient starting point for simulation. The most important function of the camera is
to define the portion of the scene that will be recorded onto the film. In Figure 1.1, we
can see how connecting the pinhole to the edges of the film creates a double pyramid that
extends into the scene. Objects that are not inside this pyramid cannot be imaged onto
the film. Because actual cameras image a more complex shape than a pyramid, we will
refer to the region of space that can potentially be imaged onto the film as the viewing
volume.
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Pinhole
Film

Viewing volume

Figure 1.1: A Pinhole Camera.

Eye

Near
plane

Far plane

Figure 1.2: When we simulate a pinhole camera, we place the film in front of the hole at the near
plane, and the hole is renamed the eye.

Another way to think about the pinhole camera is to place the film plane in front of the
pinhole but at the same distance (Figure 1.2). Note that connecting the hole to the film
defines exactly the same viewing volume as before. Of course, this is not a practical way
to build a real camera, but for simulation purposes it is a convenient abstraction. When
the film (or image) plane is in front of the pinhole, the pinhole is frequently referred to
as the eye.

Now we come to the crucial issue in rendering: at each point in the image, what color
value does the camera record? If we recall the original pinhole camera, it is clear that
only light rays that travel along the vector between the pinhole and a point on the film
can contribute to that film location. In our simulated camera with the film plane in front
of the eye, we are interested in the amount of light traveling from the image point to
the eye.

Therefore, an important task of the camera simulator is to take a point on the image and
generate rays along which incident light will contribute to that image location. Because
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a ray consists of an origin point and a direction vector, this task is particularly simple
for the pinhole camera model of Figure 1.2: it uses the pinhole for the origin and the
vector from the pinhole to the near plane as the ray’s direction. For more complex camera
models involving multiple lenses, the calculation of the ray that corresponds to a given
point on the image may be more involved. (Section 6.4 describes the implementation of
such a model.)

With the process of converting image locations to rays completely encapsulated in the
camera module, the rest of the rendering system can focus on evaluating the lighting
along those rays, and a variety of camera models can be supported. pbrt’s camera ab-
straction is described in detail in Chapter 6.

1.2.2 RAY–OBJECT INTERSECTIONS

Each time the camera generates a ray, the first task of the renderer is to determine which
object, if any, that ray intersects first and where the intersection occurs. This intersection
point is the visible point along the ray, and we will want to simulate the interaction
of light with the object at this point. To find the intersection, we must test the ray for
intersection against all objects in the scene and select the one that the ray intersects first.
Given a ray r, we first start by writing it in parametric form:

r(t)= o+ td,

where o is the ray’s origin, d is its direction vector, and t is a parameter whose legal range
is (0, ∞). We can obtain a point along the ray by specifying its parametric t value and
evaluating the above equation.

It is often easy to find the intersection between the ray r and a surface defined by an
implicit function F(x , y , z)= 0. We first substitute the ray equation into the implicit
equation, producing a new function whose only parameter is t . We then solve this func-
tion for t and substitute the smallest positive root into the ray equation to find the desired
point. For example, the implicit equation of a sphere centered at the origin with ra-
dius r is

x2 + y2 + z2 − r2 = 0.

Substituting the ray equation, we have�
ox + tdx

�2 + �
oy + tdy

�2 + �
oz + tdz

�2 − r2 = 0.

All of the values besides t are known, giving us an easily solved quadratic equation in t .
If there are no real roots, the ray misses the sphere; if there are roots, the smallest positive
one gives the intersection point.

The intersection point alone is not enough information for the rest of the ray tracer;
it needs to know certain properties of the surface at the point. First, a representation
of the material at the point must be determined and passed along to later stages of the
ray-tracing algorithm. Second, additional geometric information about the intersection
point will also be required in order to shade the point. For example, the surface normal
n is always required. Although many ray tracers operate with only n, more sophisti-
cated rendering systems like pbrt require even more information, such as various partial
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derivatives of position and surface normal with respect to the local parameterization of
the surface.

Of course, most scenes are made up of multiple objects. The brute-force approach would
be to test the ray against each object in turn, choosing the minimum positive t value of all
intersections to find the closest intersection. This approach, while correct, is very slow,
even for scenes of modest complexity. A better approach is to incorporate an acceleration
structure that quickly rejects whole groups of objects during the ray intersection process.
This ability to quickly cull irrelevant geometry means that ray tracing frequently runs
in O(I log N) time, where I is the number of pixels in the image and N is the number
of objects in the scene.2 (Building the acceleration structure itself is necessarily at least
O(N) time, however.)

pbrt’s geometric interface and implementations of it for a variety of shapes is described in
Chapter 3, and the acceleration interface and implementations are shown in Chapter 4.

1.2.3 LIGHT DISTRIBUTION

The ray–object intersection stage gives us a point to be shaded and some information
about the local geometry at that point. Recall that our eventual goal is to find the amount
of light leaving this point in the direction of the camera. In order to do this, we need
to know how much light is arriving at this point. This involves both the geometric and
radiometric distribution of light in the scene. For very simple light sources (e.g., point
lights), the geometric distribution of lighting is a simple matter of knowing the position
of the lights. However, point lights do not exist in the real world, and so physically based
lighting is often based on area light sources. This means that the light source is associated
with a geometric object that emits illumination from its surface. However, we will use
point lights in this section to illustrate the components of light distribution; rigorous
discussion of light measurement and distribution is the topic of Chapters 5 and 12.

We frequently would like to know the amount of light power being deposited on the
differential area surrounding the intersection point (Figure 1.3). We will assume that the
point light source has some power � associated with it and that it radiates light equally
in all directions. This means that the power per area on a unit sphere surrounding the
light is �/(4π). (These measurements will be explained and formalized in Section 5.4.)

If we consider two such spheres (Figure 1.4), it is clear that the power per area at a point
on the larger sphere must be less than the power at a point on the smaller sphere because
the same total power is distributed over a larger area. Specifically, the power per area
arriving at a point on a sphere of radius r is proportional to 1/r2. Furthermore, it can
be shown that if the tiny surface patch dA is tilted by an angle θ away from the vector
from the surface point to the light, the amount of power deposited on dA is proportional

2 Although ray tracing’s logarithmic complexity is often heralded as one of its key strengths, this complexity is typically only
true on average. A number of ray-tracing algorithms that have guaranteed logarithmic running time have been published in
the computational geometry literature, but these algorithms only work for certain types of scenes and have very expensive
preprocessing and storage requirements. Szirmay-Kalos and Márton provide pointers to the relevant literature (Szirmay-Kalos
and Márton 1998). One consolation is that scenes representing realistic environments generally don’t exhibit this worst-case
behavior. In practice, the ray intersection algorithms presented in this book are sublinear, but without expensive preprocessing
and huge memory usage it is always possible to construct worst-case scenes where ray tracing runs in O(IN) time.



SECTION 1.2 PHOTOREAL IST I C RENDER ING AND THE RAY-TRAC ING ALGOR ITHM 9

p

r

n

Figure 1.3: Geometric construction for determining the power per area arriving at a point due to a
point light source. The distance from the point to the light source is denoted by r.

r1
r2

Figure 1.4: Since the point light radiates light equally in all directions, the same total power is
deposited on all spheres centered at the light.

to cos θ . Putting this all together, the differential power per area dE (the differential
irradiance) is

dE = � cos θ

4πr2
.

Readers already familiar with basic lighting in computer graphics will notice two familiar
laws encoded in this equation: the cosine falloff of light for tilted surfaces mentioned
above, and the one-over-r-squared falloff of light with distance.

Scenes with multiple lights are easily handled because illumination is linear: the con-
tribution of each light can be computed separately and summed to obtain the overall
contribution.
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p

Figure 1.5: A light source only deposits energy on a surface if the source is not obscured as seen
from the receiving point. The light source on the left illuminates the point p, but the light source on
the right does not.

1.2.4 VISIBILITY

The lighting distribution described in the previous section ignores one very important
component: shadows. Each light contributes illumination to the point being shaded only
if the path from the point to the light’s position is unobstructed (Figure 1.5).

Fortunately, in a ray tracer it is easy to determine if the light is visible from the point being
shaded. We simply construct a new ray whose origin is at the surface point and whose
direction points toward the light. These special rays are called shadow rays. If we trace this
ray through the environment, we can check to see whether any intersections are found
between the ray’s origin and the light source by comparing the parametric t value of any
intersections found to the parametric t value along the ray of the light source position. If
there is no blocking object between the light and the surface, the light’s contribution is
included.

1.2.5 SURFACE SCATTERING

We now are able to compute two pieces of information that are vital for proper shading
of a point: its location and the incident lighting.3 Now we need to determine how the
incident lighting is scattered at the surface. Specifically, we are interested in the amount of
light energy scattered back along the ray that we originally traced to find the intersection
point, since that ray leads to the camera (Figure 1.6).

Each object in the scene provides a material, which is a description of its appearance
properties at each point on the surface. This description is given by the bidirectional re-
flectance distribution function (BRDF). This function tells us how much energy is reflected

3 Readers already familiar with rendering might object that the discussion in this section considers only direct lighting. Rest
assured that pbrt does support global illumination.
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Figure 1.6: The Geometry of Surface Scattering. Incident light arriving along direction ωi interacts
with the surface at point p and is scattered back toward the camera along direction ωo. The amount of
light scattered toward the camera is given by the product of the incident light energy and the BRDF.

from an incoming direction ωi to an outgoing direction ωo. We will write the BRDF at
p as fr(p, ωo, ωi). Now, computing the amount of light L scattered back toward the
camera is straightforward:

for each light:
if light is not blocked:

incident_light = light.L(point)
amount_reflected =

surface.BRDF(hit_point, camera_vector, light_vector)
L += amount_reflected * incident_light

Here we are using the symbol L to represent the light; this represents a slightly different
unit for light measurement than dE, which was used before. L represents radiance, a unit
for measuring light that we will see much of in the following.

It is easy to generalize the notion of a BRDF to transmitted light (obtaining a BTDF) or
to general scattering of light arriving from either side of the surface. A function that de-
scribes general scattering is called a bidirectional scattering distribution function (BSDF).
pbrt supports a variety of BSDF models; they are described in Chapter 8. More complex
yet is the bidirectional subsurface scattering reflectance distribution function (BSSRDF),
which models light that exits a surface at a different point than it enters. The BSSRDF
is described in Sections 5.6.2, 11.4, and 15.5.

1.2.6 INDIRECT LIGHT TRANSPORT

Turner Whitted’s original paper on ray tracing (1980) emphasized its recursive nature,
which was the key that made it possible to include indirect specular reflection and trans-
mission in rendered images. For example, if a ray from the camera hits a shiny object like
a mirror, we can reflect the ray about the surface normal at the intersection point and
recursively invoke the ray-tracing routine to find the light arriving at the point on the
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Figure 1.7: A Prototypical Example of Early Ray Tracing. Note the use of mirrored and glass
objects, which emphasizes the algorithm’s ability to handle these kinds of surfaces.

mirror, adding its contribution to the original camera ray. This same technique can be
used to trace transmitted rays that intersect transparent objects. For a long time, most
early ray-tracing examples showcased mirrors and glass balls (Figure 1.7) because these
types of effects were difficult to capture with other rendering techniques.

In general, the amount of light that reaches the camera from a point on an object is given
by the sum of light emitted by the object (if it is itself a light source) and the amount of
reflected light. This idea is formalized by the light transport equation (also often known
as the rendering equation), which says that the outgoing radiance Lo(p, ωo) from a point
p in direction ωo is the emitted radiance at that point in that direction, Le(p, ωo), plus

the incident radiance from all directions on the sphere S2 around p scaled by the BSDF
f (p, ωo, ωi) and a cosine term:

Lo(p, ωo)= Le(p, ωo)+
�

S2
f (p, ωo, ωi) Li(p, ωi) |cos θi| dωi . (1.1)

We will show a more complete derivation of this equation in Sections 5.6.1 and 14.4.
Solving this integral analytically is not possible except for the simplest of scenes, so we
must either make simplifying assumptions or use numerical integration techniques.

Whitted’s algorithm simplifies this integral by ignoring incoming light from most direc-
tions and only evaluating Li(p, ωi) for directions to light sources and for the directions
of perfect reflection and refraction. In other words, it turns the integral into a sum over
a small number of directions.

Whitted’s method can be extended to capture more effects than just perfect mirrors and
glass. For example, by tracing many recursive rays near the mirror-reflection direction
and averaging their contributions, we obtain an approximation of glossy reflection. In
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Figure 1.8: Recursive ray tracing associates an entire tree of rays with each image location.

fact, we can always recursively trace a ray whenever we hit an object. For example, we
can randomly choose a reflection direction ωi and weight the contribution of this newly
spawned ray by evaluating the BRDF fr(p, ωo, ωi). This simple but powerful idea can
lead to very realistic images because it captures all of the interreflection of light between
objects. Of course, we need to know when to terminate the recursion, and choosing
directions completely at random may make the rendering algorithm slow to converge
to a reasonable result. These problems can be addressed, however; these issues are the
topics of Chapters 13 through 16.

When we trace rays recursively in this manner, we are really associating a tree of rays
with each image location (Figure 1.8), with the ray from the camera at the root of this
tree. Each ray in this tree can have a weight associated with it; this allows us to model, for
example, shiny surfaces that do not reflect 100% of the incoming light.

1.2.7 RAY PROPAGATION

The discussion so far has assumed that rays are traveling through a vacuum. For example,
when describing the distribution of light from a point source, we assumed that the light’s
power was distributed equally on the surface of a sphere centered at the light without
decreasing along the way. The presence of participating media such as smoke, fog, or dust
can invalidate this assumption. These effects are important to simulate: even if we are
not making a rendering of a smoke-filled room, almost all outdoor scenes are affected
substantially by participating media. For example, Earth’s atmosphere causes objects that
are farther away to appear less saturated (Figure 1.9).

There are two ways in which a participating medium can affect the light propagating
along a ray. First, the medium can extinguish (or attenuate) light, either by absorbing it
or by scattering it in a different direction. We can capture this effect by computing the
transmittance T between the ray origin and the intersection point. The transmittance




